Beam-induced movement attenuation with single-wall carbon nanotubes
نویسندگان
چکیده
منابع مشابه
Single-wall Carbon Nanotubes with Ferromagnetic Electrodes
The electron transport in single-wall carbon nanotubes is one-dimensional and ballistic. Typically carbon nanotubes form tunneling contacts to electrodes and behave as quantum dots at low temperatures. We report on experiments on carbon nanotubes contacted with ferromagnetic metal. In these devices strong hysteretic magnetoresistance is observed at low temperatures. A possible interpretation of...
متن کاملUltralong single-wall carbon nanotubes.
Since the discovery of carbon nanotubes in 1991 by Iijima, there has been great interest in creating long, continuous nanotubes for applications where their properties coupled with extended lengths will enable new technology developments. For example, ultralong nanotubes can be spun into fibres that are more than an order of magnitude stronger than any current structural material, allowing revo...
متن کاملSingle-wall Carbon Nanotubes: Quantum Carbon Wires
Today’s business environment is causing utilities to examine methods to cut costs and to maximize revenues. Development of a comprehensive program for marketing and utilization* of coal combustion by-products (CCBPs) by a utility can generate additional revenue streams; reduce operating costs at plants; and defer capital costs of developing new waste disposal capacity. These factors can be opti...
متن کاملMechanism of electrolyte-induced brightening in single-wall carbon nanotubes.
While addition of electrolyte to sodium dodecyl sulfate suspensions of single-wall carbon nanotubes has been demonstrated to result in significant brightening of the nanotube photoluminescence (PL), the brightening mechanism has remained unresolved. Here, we probe this mechanism using time-resolved PL decay measurements. We find that PL decay times increase by a factor of 2 on addition of CsCl ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Crystallographica Section A Foundations and Advances
سال: 2019
ISSN: 2053-2733
DOI: 10.1107/s2053273319094695